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Abstract. This paper proposes an improved high-resolution technique that incorporates the forward (original) array together
with its complex conjugated backward version to achieve superior performance. This is in turn realized by averaging the
forward covariance matrix and the backward one, and using it in conjunction with the MUSIC technique. This paper also
presents ihe asymptotic analysis in terms of first-order approximations of the mean and variance of the null spectrum estimator.
It is shown here that in an uncorrelated scene, the bias corresponding to this scheme is exactly half of that associated with
the conventional one while maintaining the same variance. Furthermore, the bias expression in the new scheme is used to
obtain a resolution threshold for two uncorrelated, equipowered plane waves in white noise and the result is compared with
that sbtained by the conventional scheme for the same source scemne.

Zusammenfassung. Dieser Beitrag schliagt ein verbessertes, hochauflosendes Spektralanalyseverfahren vor, bei dem das
Vorwirts-Array und das zugehorige konjugiert-komplexe Riickwirts-Array kombiniert werden, um besseres Verhalten zu
erzielen. Dies wird dadurch erreicht, dap der Mittelwert von Vor- und Riickwirtskovarianzmatrizen gebildet und anschiiefend
der MUSIC-Algorithmus verwendet wird. Auferdem wird eine asymptotische Analyse von Mittelwert und Varianz des
Nullraum-Spektralschitzers vorgestellt. Es wird gezeigt, daf bei unkorrelierter Umgebung Miutelwert und Vaiianz genau wa
den Faktor zwei gegeniiber dem herkommlichen Verfahren reduziert werden konnen. Die Ausdrucke fiir den Schatzfehler
: werden dariiberhinaus verwendet, um eine Auflosungsgrenze fiir zwei unkorrelierte, im weiffen Rauschen eingebettete ebene

Wellen gleicher Leistung anzugeben. Dieses Ergebnis wird mit der Grenze, die das herkommliche Verfahren fur gleiche
Eingangssignale liefert, verglichen.

Résumé. Cet article propose une technique a haute résolution améliorée qui incorpore la séquence avant (originale) avec sa
version conjugué complexe arriere pour atteindre des performances supérieures. Ceci est réalisé, & son tour, en calculant la
moyenne de la matrice de covariance avant et arriere et ¢n utilisant en congonction aves la technique MUSIC. Cet article
présente également ['analyse asymptotique en termes des approximations d'ordre un de la meyenne et de la variance de

> Festimateur spectral sans effet. Il est montré ici, que dans une scéne sans corrélation, le biais et la variance correspondant

a cette méthode sont exactement {a moitié de ceux associés avec la méthode conventionneile. En plus, les expressions de
biais de la nouvelle méthode sont utilisées pour obtenir un seuil pour deux ondes planes non corrélées et a énérgie égale
dans du bruit blanc et le résultat est comparé a celui obtenu par la méthode conventionnelle pour la méme scéne de source.

Keywords. Underwater signal processing, detection and estimation of multiple signals.

1. Introduction

The eigcnstructure-based high-resolution techniques for estimating the arrival angles of multiple plane
wave signals have been of great interest since the well-known works of Pisarenko [14], Schmidt [16] and
others [2-4, 7,9, 11, 17]. These methods, in general, utilize certain eigenstructure properties resulting from
the special structure of the sensor array output covariance matrix for planar wavefronts [16] to generate
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spectral peaks (or equivalently spectral nulls) along the actual directions of arrival whenever the sources
are at most partially correlaied.

When the exact ensemble average of the array output covariances are used, all these methods result in
unbiased values (i.e., zero for the null spectrum) along the true arrival angles, irrespective of signal-to-noise
ratios (SNRs) and angular separations of sources. However, when these covariances are estimated from
a finite number of independent snapshots, these techniques exhibit deviations from their ensemble average
values. These deviations depend on the specific scheme under consideration together with the SNRs and
other signal and array specifications. All these taken together determine the resolution capacity of the
technique under consideration.

This paper proposes an improved high-resolution technique without compromising on the size of the
original array. In addition to the forward (original) array, this new scheme makes use of a complex
conjugated backward version of the original one to achieve superior performance. This is in turn realized
by averaging the forward covariance matrix and the backward one, and using this averaged matrix in
conjunction with the MUSIC estimator. A detailed nerformance analysis of this new scheme, when
covariances estimated from a finite sample size are used in place of their ensemble averages, is also
presented along with first-order approximations of the mean and variance of the null spectrum estimator.

The organization of this paper is as follows: For clarity of presentation, the conventional scheme is
summarized and the proposed one is described in Section 2. Using results derived in Appendix A, Section
3 presents the first-order approximations of the mean and variance of the null spectrum estimator
corresponding to this new scheme and the conventional MUSIC scheme. The bias expressions are then
used to obtain a resolution threshold for two uncorrelated, equipowered plane wave sources in white
noise; and this result is compared to the resolution threshold in the conventionai case [8] for the same scene.

2. Problem formulation

Let a uniform array consisting of M sensors receive signals from K narrowband sources u,(t),
u>(1), ..., ug(t), which are at most partially correlated. Furthermore, the respective arrival angles are
assumed to be 8, , 8-, ..., 8, with respect to the line of the array. Using complex envelope representation,
the received signal x,(r) at the ith sensor can be expressed as [12]

K

x()=Y wu(r)e’™" N n (1), (1)
k-1

Here the inter-element distance is taken to be half the wavelength common to all signals and n,(1)
represents the additive noise ai the ith senso:. It is assumed that the signals and noises are stationary,
zero-mean circular Gaussian' independent random processes, and further, the noises are assumed to be
independent and identical between themselves with common variance . Rewriting (1) in common vector

' A complex random vector ¢ is defined to be circular Gaussian if its real part x and imaginary part y are jointly Gaussian and
their joint covariance matrix has the form 5, 10]

A 102

where 2 = x + jy. When ¢ has zero mean. its covariance matrix is given by E[z2'12 E[(x+jydx" = jp"}] = V +jW Clearly, E(zz') = 0.
Here onwards A', A*" 2 A" stand for the transpose and the complex conjugate transpose of A, respectively.
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notation and with w, =mcos 6,, k=1,2,..., K, we have
i _ K
() =vM ¥ w(alw,)+n(1), (2)
A -1
where x'(1) is the M x 1 vector
=[x 0, (0., .., xa (D], (3)

and a(w;) is the normalized direction vector associated with the arrival angle 6,, i.e.,

|¢u“e 12w, e M l)wk]T‘ ‘4)

»

( )‘—l (1
alwy '—\/‘—A‘/i » € ’

The array output vector x'(1) can further be rewritten as
Y p

X = Auwiny+ 500, (5)
where

() =[u, (), ust), ..., ue (D], n()={n(0), n(0), ..., ny(0], (5a)
and

A=VM[a(w)), alw.), ..., alwy)] (5b)

Here A is an M x K matrix with Vandermonde-structured columns (M > K) of rank K. From our
assumptions it follows that the (forward) array output covariance matrix has the form

R'2E[x()x"(1)]=ARLA" + o1, (6)
where
R 2 E[u(t)u’(n)] (6a)

represents the source covariance matrix which remains as nonsingular so long as the sources are at most
partially correlated. In that case AR,A' is also of rank K and hence, if A,=A.> - -= A, and
B..B-...., B are the eigenvalues and the corresponding eigenvectors of R' respectively, i.e.,

Af
R'=Y ABBI. 7
-1
then the above rank property implies that Ax ., =Ag,»=" - = Ay, = o and the eigenvectors corresponding

to these equal eigenvalues are orthogonal to the direction vectors associated with the true arrivals, i.e.,
Bialw,)=0,i=K+1,K+2,...,M k=1,2,..., K. Hence the K nulls of Q(w) given by

M

K
Q)= ¥ |[Bratw)f’=1- Y |Bialw)] (7a)
k=1

A=K+1

correspond to the actual directions of arrival [16].

To improve the pérformance of the above estimator, in addition to the forward (original) array, we
propose to make use of the complex conjugated backward array of the original one. Let x"(1) denote the
complex conjugate of the backward array, i.e.,

") =[x%0, x% (0, xHD]) = Aut (O +a (1), (8)

Val 17, Na TU 00l dvay

——————g——
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where

u®(O)2[ub(0), ub(), .., ub(D),  wh() =uF(n) ™M (8a)
and

n®(1) =[n¥ (1), n¥ (1), ..., Af(DO]". (8b)
It follows that the backward array output covariance matrix has the form

R" = E[x°(1)x"'(1)]= AR, A"+ 0’1, (9)
where

RS = E[u®(n)u®'(1)]. (9a)

Averaging the forward covariance matrix and the backward one together, we define the forward/back-
ward (f/b) covariance matrix as

R2YR'+R°)= AR, A"+l (10)
where
R,24{R[+R). (10a)

It is easy to show that whenever the rank of R', is at least K — 1, the same is true for R® and moreover
in that case R, is of rank K [12, 13]. Hence the eigenvalues of R satisfy A, Z A, = = Ax > Ax.; = Agar =
cee= iy =0 Consequently, as in (7a) the K nulls of Q(w) given by

. Mo . Koo s
d)= T [Bla@P=1- I (fiaCo) (1)

k=K+1

will correspond to the actual directions of arrival. Here ﬁ,, ﬁz,...,ﬁM are the eigenvectors of R
corresponding to the eigenvalues A,, A,,...,An; i€,

R=7% ABB:.
=1

Notice that the above lower bound on the rank condition (rank R, = K —1) physically corresponds to
one coherent arrival among the K sources; and further the full rank property for the equivalent source
covariance matrix R, in that case implies that the coherent source has been essentially decorrelated by
the simultaneous use of the for vard and backward arr: . however, the main advantages of this modified
scheme do not become apparent until its performance . ‘uation is completed in the more realistic
“data-only known" case.

So far we have assumed that an ensemble average of the array output covariances are available. Usually,
these exact averages are unknown and they are estimated from the array output data. Often this is carried
out for the unknowns of interest using the maximum likelihood procedure. For zero-mean M -variate
(circular) Gaussian data x'(1,), n=1,2,..., N in (5), with unknown M X M covariance matrix R', the
maximum likelihood (ML) estimate S’ of the covariance matrix is given, referring to [1], as

S° L xe)x"(1,)
=-= X ().
N .=
Using the invariant property of the maximum likelihood proccdure, *he cerresponding estimates S”
and S for the unknown matrices R® and R can be constructed from S' by the same rule that is used in
constructing R" and R, respectively, from R', i.e.,
$=4S"+S"),

Signal Processing




B.H. Kwon, S.U. Pillai / Array processing for angle of arrival 263
with

St = xb(t,,)xb*(r,,).

uMZ

1
N .,

In what follows we study the statistical properties of these estimated covariance matrices and their
associated sample estimators for direction finding.

3. Performance analysis

3.1. Main results

This section examines the statistical behavior of the proposed forward/backward scheme and derives
expressions for the bias and the resolution threshold for two equipowered uncorrelated sources. These
results are substantiated by simnulation studies and comparisons made with similar results obtained in the
conventional case [8]. Toward this purpose, consider the eigen-representation

S=ELE’ (12)
for the ML estimate of the f/b matrix 13, where

E=[é,6,...,6x,6k01,....6n), L=diag(l\,T,,..., 0k, Ix.\,..., ], and EE'=1,,
which satisfies €;,=0, i=1,2,..., M for umqueness Here the normalized vectors e,, ZIRERS éx are the

ML estimates of the elgcnvectors B,,ﬁz, .. BK of R respectively [5]. Similarly, Il, 12, ey I.K are the
ML estimates of the K largest and distinct elgenvalues A1, As,..., Ak, and the mean of I,“,, cees I~M is
the sample estimate of the repeating lowest eigenvalue o’ of R. Following (11), the sample direction
estimator can be written as

M K
Ow)= Y l|éla(w)P=1-F |éla(w) (13)
k=K+1 k=1

The asymptotic distribution of the estimates of the eigenvalues and eigenvectors associated with the
distinct eigenvalues of R is derived in (A.35)-(A.36) of Appendix A. Corresponding results for the
conventional scheme in (7a) can be readily evaluated as special cases of this general result. It is also
shown that that the estimated eigenvalues and a specific set of corresponding unnormalized eigenvectors
are asymptotically (in the sense of large N) jointly Gaussian with means and covariances as derived there
(see (A.37) and (A.38)). Further, after proper renormalization and using an exact relationship developed
in Appendix B among the different sets of eigenvectors, it is shown in Appendix A that (see A.49)

. k[ M
E[0<w>]=o(w>+— ) (A T 2IB a(w)f’
o
—Af E LY a'(w)BBia(w) | +o(1/N?) (14)
k=1 I:l(x.—xk)(xi_;\l) K ’
k=i [y
where from (A.18)
Fay2ABIRBBIRB +BIRBBIR B+ BIRFY R B+ BIR 77 R'B.). (15)
* diag] i,, fz, ..., in ] represents an M x M diagonal matrix with diagonal entries 1,, I2 ..... I\,. respectively.
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In particular for the conventional MUSIC case with (A.45) in (14), after some simplifications it reduces
to

- 1 K M A
E[Qw)]=Q)+ L L| L {lﬂ. () +o(1/N?)
i=1) k= l(A
k#1
K Ao 5
—Q(w)+—~ 2 ~———(,\ — Q(w)]+to(1/N"), (16)

where A, B:, i=1,2,..., M, are as defined in (7) and Q(w) is given by (7a).
Similarly, from (A.52)

Var(Q(w)) 2 ¢*(w)

_2 5§ § ¥ Rel(ya'tw)BBiatw) + Tya'(w)BBja(w))a’ () fiflalw)]
N 2 j=1 k=1 I=1 (Xi_xk)(xj_).\l)
k=i I=j
+0(1/N?Y), (17)

which again for the conventional MUSIC case reduces to

Var(Q(w)) £ o}(w)

2 KM ,
=N.§. kZl (A )2|B a(w)f’|Bra(w)’
k=i
+ T 2 2
,Zl“ “ Bia(w)l’|Bja(w)’ | +o(1/N?)
2 Ao’ 5
=N Q@) Z 2)2|ﬁ a(w)+o(1/N?). (18)

Since along the actual arrival angles, Q(w, ) =0, k=1,2,..., K, (18) allows us to conclude that within
the above approximation,

o’z(wk)EO’ k=132""9K1 (19)

i.e., in all multiple-target situations, where the conventional MUSIC scheme is applicable, the variance
of the sample estimator for (7a) along the true arrival angles is zero within a first-order approximation.
It is easily verified that this result agrees with those of Kaveh et al., for a two-source case (see equation
(30) in [8]). An algebraic manipulation shows that their Var( D(w)) =0, agreeing with (19) here.

In particular, when all signals are uncorrelated with one another, that leads to some interesting results.
In that case, the backward covariance matrix in (9) is identical to the forward covariance matrix in (6),
jie, RR=R° =R implying equality of all eigenvalues and eigenvectors for these matrices. In that case,
from (A.20),

f.k/, =3AA (8.5, + Blyy, Bi) (20)
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Let 7(w) and n(w) denote the bias in the f/b and the conventional null spectrum respectively. From
(14)-(18) and (20),

#(w)=E[Q(w)]~ Qlw)

-

L \lﬁ —)ﬂ—[(M—K)lp*a(w)F—(')(w)]+o(1/N3)=‘ (w)+o(1/N7) (21)
IN S (A —0) ' M -
and
. 2 Kooaol . X , .
Flw)=—=Qw) ¥ —Z—|Blalw) +0(1/N?) = 0*(w). (22)
N lr—l(/\l—a.)

Notice that once again ¢ (w,) =0, k =1,2, ..., K. Though there is no significant advantage in using R
instead of R' when the exact covariances are known (except when there is a coherent source), this is no
longer true when these covariances are estimated from the data. Then, in an uncorrefated source scene,
only half the number of samples are r2quired to maintain the same performance in terms of bias compared
with the conventional scheme while maintaining the same variance. Similar improvements in performance
can also be deduced for a partially correlated source scene (0 < ]p,-,|< 1). To see this, let

- Efu(D)uf(0] A
(E(Ju(OP1E[lu (D"
represent the correlation cocfficient between the signals u,(r) and u,(¢). Then in the case of the f/b scheme.

the equivalent correlation coefficient p, appearing in (10a) for the same pair of signals can be shown to
be [12]

Py ‘Pule"(b”‘ iqj: 1.2,. Cy K

ﬁu' = Ipyl e‘j(M 7”“’” COS((M - ] )wi1 + ¢|j)- wij = (w; _wl )/2

Clearly, |p,|<|p,|; or stated in words, the f/b scheme has in effect decorrelated the signals beyond their
original correlation level. Since uncorrelated signals have superior performance in this new scheme, any
amount of decorrelation will essentially lead to improved performance.

The general expressions for the bias and variance in (14) and (17) can be used to determine the required
sample size for a certain performance level or a useful resolution criteria. Though the general cases are
intractable, an analysis is possible for two uncorrelated sources. As shown in the next section, the
performance of the proposed scheme can be evaluated in terms of a resolution threshold for a two source
scene.

3.2. Two-source case

In this section we will assume that the two sources present in the scene are uncorrelated with each
other. In that case, from (21) and (22) with K =2, the f/b scheme is uniformly superior to the conventional
one in terms of the bias of the estimator by a factor of two. This conclusion is also supported by simulation
results presented in Fig. 1 with details as indicated there.

The deviation of n(w,) and n(w,) from zero—their nominal value—suggests the loss in resolution for
the respective estimators. Since the estimators have zero variance along the two arrival angles in both
cases, for a fixed number of samples a threshold in terms of SNR exists, below which the two nulls
corresponding to the true arrival angles are no longer identitiable. This has led to the definition of the
resolution threshold for two closely spaced sources as that value of SNR at which [8]

E[Qw))]= E[Q(w:)] = E[Q(w, +wy)/2)), (23)

Vob 13, No ¥ Juby 1989
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0.003
------- f/b scheme for two uncorrelated sources
* f/b case simulation with N =50
02 conventional scheme for two uncorrelated sources
h_ —
N conventional case simulation with N =50
\:\‘ + +
BIAS T T ]
0001
.................................... .'*
0 } i
0.15 0.25 0.35 045

ANGULAR SEPARATION (w, -w,)

Fig. 1. Bias at one of the arrival angles vs. angular separation for two equipowered sources in an uncorrelated scene. A seven
element array is used to collect signals in all these cases. Input SNR is taken to be 10 dB.

whenever Var(é(w,))zVar(QA(wz))zo. To simplify (23), notice that in the case of two uncorrelated
sources with unit power, the eigenvalues and eigenvectors of the signal subspace has the form [12],

pi= M1 £lp)), (24)
and
(u, £ u2)/V2(1 £ Si(Mw,)), Si(Mwg)>0,
={(u,?:u;)/v’Z(IISi(de)), otherwise, » i=L2, (25)
where
="M " q(w), wy=e"M " a(w,), (26)
with
p.=a' (w)a(ws) ="M "Si(May), sa<de)=;i4—"SiA:%"d; wdéﬁ”‘;“’”. (27)

Defining A7 =(M?’wl)/3, we can find several inner products that are valid for Si{ Mw,) > 0. In particular,

» 1+8i(Mawy)

Bia(w)| = ————"=1-147+4a%, (28)
. , 1-Si(M \
1B:alw,)|*= &%zld‘q‘(‘_f‘, (29)
fori=1,2.
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With the midangle w,, = (@, + w:)/2, we also have

2(Si(Mw,/2)) _

1—-44* 30)
1+Si( Mw,) w0 (

|Blalw,)] =

and
|Bra(w,) =0. (31)

Using these inner products, Kaveh et al. found the resolution threshold & (=MP/o’, array output
SNR) for the conventional scheme to be [8]

1120(M -2) N . ‘”}]
~ | 2] ' 2 3
ér N[ Al {l (] 5(M»-2)A> ’ (32)

The corresponding threshold &; for the proposed (f/b) scheme can also be found by using these norms.
In that case from (23),

. 1[iwom-2) 2N R ‘”}]
=—| — — A" = & . 3
& N[ 37 {1+(1+5(M~2)A) &r/2 (33)

This asymptotic analysis is also found to be in agreement with the results obtained by Monte Carlo
simulations. A typical case study is reported in Table 1. Under the equality conditions in (23), the
probability of resolution was tound to be 0.3 in both cases there. This in turn implies that the above
analysis should give an approximate threshold in terms of ¢ for 0.3 probability of resolution. Comparisons
are carried out in Fig. 2 using (32), (33) and simulation results from Table 1 for 0.3 probability of
resolution. Figure 3 shows a similar comparison for another array length. In all these cases the close
agreement between the theory and simulation results is clearly evident.

Table 1

Resolution threshold and probability of resolution versus angular separation for two equipowered sources in uncorrelated scenes

Angles of arrival Uncorrelated Uncorrelated (f/b)
Angular separation
e, 0, 2wy SNR (dB) Prob. SNR (dB) Prob.
40.00 43.00 0.1090 16 0.21 13 0.24
17 0.36 14 0.3%8
18 0.48 15 0.39
19 0.70 16 0.58
20 0.81 17 0.61
55.00 58.00 0.1372 12 0.20 9 0.21
13 0.40 10 0.37
14 0.50 1 0.45
15 0.59 12 0.65
16 0.83 13 0.67
120.00 124.00 0.1860 6 0.15 4 0.2s
7 0.24 5 0.38
8 0.48 6 0.50
9 0.50 7 0.57
10 0.79 8 0.78

Number of sensors = 10, number of snapshots = 75, number of simulations = 100.

Vol 17 Na b, July 1989
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20 - L
----------- f/b scheme using (33)
* f/b case simulation with N =75
. ——  conventional scheme using (32)
' + conventional case simuliation with N =75
15
‘..
'
THRESHOLD |,
SNR (dB) ..
5 «
0. e .
0.1 0.15 0.2

ANGULAR SEPARATION

Fig. 2. Resolution threshold vs. angular separation for two equipowered sources in an uncorrelated scene. A ten element array i~
g g 4 3
used ta recenve signals in both cases.

28 e
------ f/b scheme using (33)
20 *  f/b case simulation with N = 100
* conventional scheme using (32)
+ conventional case simulation with N= 100
15 )
THRESHOLD
SNR (dB) e
10
“a
S ]
0 or 0.2 A
ANGULAR SEPARATION

Fig. 3. Resolution threshold vs. angular separation for two equipowered sources in an uncorrelated scene. A seven clement array
is used to receive signals in both cases.

The above 0.3 probability of resolution can be explained by re-examining the arguments used in deriving
the resolution threshoids (32} and (33). In fact, (23) has been justified by observing that Var( @( w M=
Var( é(wﬂ) = 0. Although Vax(é((w, +w,)/2)) is equally important in that analysis, using (18) and (22)
it is easy to see that these variances along the midangle have nonzero values. This implies that though &,
and g, satisfy (23), in an actual set of trials the estimated mean value of (j(lw, + w,)/2) will almost always
be in the interval (0, ?_E[é((w, +w.)/2)]) and clearly the resolution of the two nulls in O(w) is possible
only if this mean estimate lies in the upper half of the above interval. In the special case of 4 symmetrical
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density function for the mean value estimate along the midangle, this occurs with probability 0.5 and the
observed range may be attributed to the skewed nature of the actual preobability density function.

4. Conclusions

An improved high-resolution technique that incorporates the forward array together with its complex
conjugated backward form for estimating the directions of arrival of multiple signals is described here.
An asymptotic analysis together with expressions for mean and varance of this proposed f/b scheme is
presented first. and the conventional MUSIC scheme is then derived as a special case of this general
analvsis. In particular, when all signals are uncorrelated, the bias of the null spectrum estimator for the
f/b scheme is found to be half of that in the conventional case. Further, a resolution threshold, which
depends on the relative angular separation, number of sensors, number of snapshots and signal-to-noise
ratios, for two uncorrelated, equi-power:d, closely spaced signals is derived here for this new scheme and
this is compdred to a similar result obtained in the conventional case {8]. From these comparisons, to
detect two arrival angles under identical conditions one needs approximately half the number of snapshots
with respect to the conventional case. These conclusions are also seen to closely agree with the results
obtained from Monte Carlo simulation studies. For this scheme, similar computations can be carried out
in a two coherent source scene in order to obtain the corresponding threshold {12, 13].

Appendix A. Asymptotic distribution of the sample eigenvalues and eigenvectors
corresponding to distinct eigenvalues of R

With symbols as defined in the text, § representing the ML estimate of the forward/backward (f/b)
covariance matrix R, we have

R=YR'+R"2BAB (A1)
S = i[;\, i {x'(nix'tnn +x" '”(th))~}:} 2 FLE ", (A.2)
2 ol
where
F[S]=R.  B=(B,.B.. .. Bu).  E -[é.6...... él
{ =diag[A, Ao JAeooo o ot) L=diagll 1. R Iy
BB - EE =1,
and B, E satisfies é,,, €, >0, 1=1.2,.... M for uniqueness. A\.is well known, the eigenvectors are not
untque, and let C represent vet another set of eigenvectars for S, ie.,
S:CLC, (A3
where
C-lejieniienl (Ad)
CcC’ =1, (A.5)

For reasons that will become apparent later, € 1s made unique here by requinng that all diagonal elements

of ¥ given by
Y=B'C (A.6)

Veu 17N Tl e




270 8. H. Kwon, S.U. Pillur  Array processing for angle of arrival

are positive (v, =0, i=1,2,..., M). In what follows we first derive the asymptotic distributio of the set
of sample eigenvectors and eigenvaltues of S given by (A.3)-(A.6) and use this to analyze the performance
of the sample directions of arrival estimator O(w) in (13). This is made possible by noticing that alrthough
the estimated eigenvectors é,,€....., 8., in (13) are structurally identical to their counterparts

[}, . ﬁ ,,,,, B.. and in particular have ¢, ~ 0, nevertheless as shown in Appendix B, they are related to
c,.i-1,2...., K, through a phase factor, i.e,,
é e, 0120, K (A7)

and hence

LN A K

Qlwi - 1- N daiw) =1-Y [catw)] =1- Y ylw), (A.8)
[ [} [
where
Viw) 7 atwn’. (A.9)
Thus, the statistical properties of (j((u) can be completely specified by those of ¢, i=1,2,..., K, and

toward this purpose, let

FYUNOL - A, (A.10)

G (BB Bae B ]2 NIC B, (A.11)

T*BSB B CLC B-YLY', (A.12)
where Y ois as defined in (A.6) with v, =0, i=1,2, ..., M Further, let

U N(T-1)= :—IW nil (LB ix () (x'(n)) +x"(n)x"(n)) VB - A]

1 > ) . -
- "\_“[Stz'mnz'um +2mEN e - AL (A1)

with

Zim o B ox'tn ~ N0, B R'R) (A.14)
and

tm - B x i)~ Ny, B R"B). (A.15)

It is casily verified that these random vectors preserve the circular Gaussian property of the original data
vectors. Again, from the independence of observations, asymptotically every entry in U’ is a sum of a
large number of independent random variables. Using the multivariate central limit theorem [1], the
limiting distribution of  tends to be normal with means and covariances given by

'
no

A _ .
Flu,] = VY ELWG oo+ 2oz an - 3,8, =0. {A.16)
v N
{Here onwards whenever there is no confusion, we will suppress the time index n) since

et w20 s BUF M (' +xPa 1 8, = BUELS]B, = B.RB, = 1.5, (A.17)
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and
1 X £f £ f : 33
E[u.,-ui‘/]=—ﬁ Y [HEE X2+ E(2iz¥ 25 2y + E(20z* 2k ) + E(2020* 2020 - X, A.8,84,
n=1

Using the results’ for fourth-order moments of jointly circular Gaussian random variables and after some
algebraic manipulations, we have

E[uu]=i{BRBBIRB+ B R BLIRB,
+ﬁ:Rrili;Rbﬁ.k+B~:Rb‘).'l').'jkrp~k]éfikl]- (A.18)
In obtaining (A.18), we have made use of (A.17) and the fact that for circular Gaussian data

E[z0z°%*]= B E[x'x""18; = B E[x"(x")T]y* =0. (A.19)

Here v, is the inverted ﬁj“ vector with vy, ,, = [;,"fM_,,,H. In an uncorrelated source scene, it is easy to show
that B, RB, = 7, Ry, for all i, j. Using results of Appendix B, it then follows that 3, = B¢, i=1,2,..., K
and [¥Ykaqy---» ‘fm]=[éx+|, R B.M]V, where V is an (M — K ) x(M — K) unitary matrix. In that case,
this together with the identity ﬁ:a(wk) =0fori=K+1,K+2,...,M and k=1,2,..., K simplifies the
above expression into

fiklj = %er,(51k8ﬂ+ ﬁ:il&;ﬁ.k) (A.20)
Proceeding as in (A.18) we also have
E[ul';ukl] :%[B.:Rrﬁlﬁ.;krﬁj+B.:Rbﬁlﬁ;RbB~J
+BIRYF R B+ BIR 55, R'BI2 T, (A.21)
Using (A.12) together with (A.13) and (A.10) we have

- 1 - .1 ,
T=A+—=U=YLY =Y|A+—=F)Y
vN ( vN ) ’

which gives the identity

- 1 -~ 1
A+—U=Y A+—F>y*. A.22
v A,\ ( \/—N— ( )
To d'r - the asymptotic properties of the sample estimates corresponding to the distinct eigenvalues
X.,:  .Xx of R, following [1, 6], we partition the matrices A, U, F and Y as follows:
A0 ] Uz[v.l U,z]_ F=[r. o]’ Yz[v.l h:J. (A23)
LO o'l « U, Uy 0 £ Y., Y

' Let z,,:2,,2,,2, be jointly circular Gaussian random variables with zero mean. Then (refer to [15] E[z,z%:%:,]=
E(z 21 E( 2,27+ E[2,2¥]E(2,27])
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Here ,i‘. U\, F, and Y, are of sizes K x K, etc. With 1A.23) in (A.22) and after some algebraic
manipulations and retaining only those terms of order less than or equal to 1/v'N, we have

["’il 0 ] ] [U” U':] [/’i, 0 ]
¥ +— = 3 +
0 o'l & VN LUy Uy, 0 oY, Y.,

AW, AW A, WY,
+i{[ Pe 1,w;,]+[r, 0 ]+[‘;"2‘ 7 w"‘"]}mu/N). (A.24)
MRS}

VN Lo YW, 0 0 Y.F.Y;. 0
where
W, =vN(Y, - L), (A.25)
W,.=VNY,,, W, =J/NY,,, (A.26)

and the column vectors w,, w,, ..., w, are defined to be

” ll“ A
=W, way ... W |2 W A27
[wg,J v, w: ¥u] | |
Similarly,
. I 0 1 f[w,l w,ﬁvi,] [ W, w‘;,]}
YY' =1, = . +— R . - + 1/N). A.28)
M [0 Y., Y:J v‘f—Ni W, 0 Y. Wi, 0 o(l/N) (

Thus, asymptotically for sufficiently large N, from (A.28) and (A.24) we have

0=W, +W,,, (A.29)

W+ Y., W.=0, (A.30)

Uy =WoA, +F+A4,W), (A.31)
and

Uy =Wod, + YW =W, A, ~ o'W, (A.32)

Since v, =0, this together with (A.25) and (A.29) implies

w,=0 i=12....K and w,=—wy, Ly=1,2,....K i#j

’

which when substituted into (A.31)-(A.32) gives

fo=u, i=12, ..., K, (A.33)
ull P . .
— Li=02...,. K, i#]j
(A, —4A,) J J
w, = (A.34)
u, .
—1—= i=K+1.K+2,...,] M, j=1,2.....K
A, -0 ’

From (A.11) and (A.6) we also have

YH"K yl.‘ ]

G;vW(C—E)zv'Wé(Y—l):\Wé[ ,
| 89 Y- Iy &
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which gives
(8.8 . 8x)=Blw, ws ..., wx] or g=vVN(c-B)=Bw, i=12... K
This together with (A.10) and (A.33) gives
=X +(NNY, =X, +(1/VN)u,, i=1,2,... K, (A.35)
and

M

=B +(1/VN)Bw,=8,+(1/VN) L w,B8, i=12 ... K (A.36)
e

Thus, the estimators I~, andc,i=1,2,..., K, corresponding to the distinct eigenvalues of 15, are asymptoti-

cally multivariate Gaussian random variables/vectors with mean values A,and B,,i=1,2,..., K, respec-

tively. Furthermore,

- 1
Cov([,,l -—TV—E[u,, J=—1,, j=1,2,...,K {A.37)
and
Coviene) = ¥ ¥ ElmwilBifi=~ T % Y BB (A.38)
ov(ic, ¢)=— Wi =— — . .
TONGTS e K N 20 2= A0(A —Ay) i
k»r 1#) k=i 1)

Notice that ¢; in (A.36) are not normalized vectors, and it may be emphasized that in the case of cigenvectors,
the above asymptotic joint Gaussian property only holds good for these specific sets of unnormalized
sample estimators. However, from (A.5) since the eigenvectors ¢, i=1,2,..., K, appearing in (A.8) are
normalized ones, to make use of the explicit forms given by (A.36) there, we proceed to normalize these
vectors. Starting from (A.34), we have

M

1
||C|l’¢‘¢‘—1+NV["|>1 (A.39)

—
i=1
j=i

and, hence, the corresponding normalized eigenvectors ¢, i=1,2,..., K have the form

2 Al I N 1 -
¢ =lall C.=(1+—1\7] :l“ |) (B +\/—-Z w,B;

it #*
1 M 3 M o N?
1—-— —_ . ; B +o(l A.40
( 2N}L.Il“ l \/"“ “ jB} ZN\/—-‘(Z‘ 'Z‘Iwkl MIBI 0( / ) ( )
j®i jEI ke [+i
Using (A.34) and (A.18) we have
E[é]-f- :
t i 2N7,N.| jl
j*t
. 1 T
=f3, - — — g +0o(1/N7), i=1,2,....K, A4l
B 2N,2‘.(A—A)B o(l/N-), i ( )
Jt
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since from the asymptotic joint normal distribution of these zero-mean random variables u, (i # j), their
odd-order moments are zero. Thus, asymptotically these normalized estimates for the eigenvectors

B..B-. .. ., Bx, of R are unbiased and the exact bias expressions are given by (A.41). Furthermore, from
(A.40)
T TR 4y wol) |86
éé, IQZN };llwk.| +k1.: Iwy[* ) |BB,
k=i k=g

+—
N .=

k%t I=g

Y .., M , 1 M M . -
+ vl Z ”’klﬁkpl + 2. M"t;BIBk Z Z w’kl“’ﬁﬁkﬂl
= - =1 I

1 M
*;f:l\/—ﬁ( ) X fwi*w, lﬂ;+ Z Z |wi, | "UBB!

k-1 121

k*t 1y kr; l:,
M M 5

+3 Y wwlBB+ T > z lwi'wEBB1 | +0(1/N). (A.42)
k =1 1-=1 k=1 [=1
k=i I#j k=i 12

Again, neglecting terms of order 1/ N” and proceeding as above, this expression reduces to

k=1 ll
ki I=j

E(éé)=Bf - — (z Ellw|

k= k#;

]+ }: E[lwk;l ])ﬂpl+— Z Y E[“kl”l}]BkBl+o /N )

-4 1 M fiik f kk
=ﬂ.ﬂ,;———[ Y 5=+ Y ——”———]Bﬂ,

AN S (=207 SR Ay
K#*i ki
41 E § s pp +0o(1/N?), (A.43)
— ~ = P ) 0 .
NS S (R =ROGK, - T
k=i 1#=j

and proceeding in a similar manner and using (A.21)

1 M f"kk M f
EL&EN =B - 2N[z———~ Xk)ﬁfl—l—u_“Jﬁﬁ,

k:I(Al_
k=1 k=j
+—'—'§ 'E (o BB +0o(1/N?) (A.44)
NS SR -Rai, - i) T ' '
k=i I=j

An easy verification shows that Cov(¢,, ¢)) is once again given by (A.38), but nevertheless, (A.42)-(A.43)
will turn out to be useful in computing the asymptotic bias and variance of the sample direction estimator
O(w) in (13).

The conventional MUSIC scheme [16] now follows as a special case of this analysis. In that case, from
(A.16)-(A.18) retaining only the terms corresponding to the forward array, we have

nhl, B RBI(B Rﬂ) AlAlalksj" (A45)
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Thus, for the conventional MUSIC case using (A.45), we obtain

1 M A
E[é)=8 - ZN,zlm—B+0(l/N) (A.46)

R I Y VN v ) :
Ele& =88, 7y [E. TN (A,—AA)Z]B‘B’

ki k#j
1 M aa,
— + N? 47
Nk}:_l Ak)zﬁkﬁké., o(1/N?), (A.47)
ki
and
Y] M
. 1 Adi AA, AA ,
E[ééf)=B, + ! . 1-8,)+0(1/N?
[ ] BB/ I\kgl (Ai~Ak)2 kg, (AJ_A‘( ]BBJ N (/\ ZB]B ( ]) o( / )
ki k#j

where A;, B, i=1,2,..., M are as defined in (7).
Once again for the f/b case, using (A.8)-(A.9) and recalling that the eigenvector estimators appearing
there are normalized ones, we have

yilw)=|¢a(w)f’ = a'(w)ééa(w) (A.48)
and from (A.43) and (13) we have
_l_K M fk
E[Q(w)]=Q(w) N.;[é.——_(i, T
k#i
-3 % a "(w)BiBla(w)|+o(1/N?) (A.49)
5 BT T Ky @ (IBBia) ot/ A
#Ai I#f

and this shows that

E{O(w)]»> Q(w) as N »co,

Var(Q(w)) = E[Q*(w)]~ (E[Q(w)])’ = L( Z )]‘(5[(“§‘)D

T (Elyy]- E(v]EDy)). (A.50)

Also,

i
Tt

Using (A.48) and (A.42), after a series of manipulations, we have
1 )
E(yy, 1= E(w]E[y,] =1 E(d(@)d (w)]+0(1/N7),
where

diw)= Y (wk.a'(wﬁkﬁ:atwwwz,a’<w)ﬁ,-é1a(w)),
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which gives

a(w)la' (w)fiBa (w)]

2 M M Re[{li,a'(w)BBialw)+Ta'(w)BB,

E E E - Y‘ Y _ i — L /

[yinl= ELnJEL] N .=, IZI (A, — A, WA, —Ay)
k=1 i=j

+0(1/N?). (A.51)

Finally, with (A.51) in (A.50) we get

Val‘(é(w))——z— i E E 2 Re[{lu,.a (w) B,BI +rl\/h )B.'lf;;a(w)}af(w)ﬂ.kﬁ:a*(w)]
im0 =0 k=t 11 (A,"/\k)(/\,“)\l)
k=i I+
+0(1/N%)»0 as N-cx, (A.52)

Thus Q(w) is a consistent estimator in all cases.

Appendix B. Equivalence of eigenvectors

Let R be an M x M Hermitian matrix with distinct eigenvalues XiyAss... A, where m,, m...... m,,
represent their repetitions. Then m, +m,+- - -+ m, = M; further,let B, Bi>, ..., Bim,,-- ., Bia, represent
one set of associated normalized eigenvectors. With

- -~

=[I§nsﬂ|z,...,l§|.\1], ﬁnl;::IM
and

A =diaglh,, Xy s A Ay Ay Ay A
we now have
R =B, AB,. (B.1)
Let

é::[ﬁ:nﬁ::» e nﬁlM]
represent yet another set of normalized eigenvectors of R. Then

B.B:=1,, R=B.AB;, (B.2)
and from (B.1) and (B.2) we have

B, AB = B.AB.,
or equivalently

AV = VA, (B.3)
where

V=88, (B.4)
Thus, V is also unitary and, further, A and V commute. Moreover, from (B.3) we have

A, = U A,

Signal Processing
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which for A, # A, gives v, =0. This together with the fact that V is unitary implies V is block unitary with
blacks of sizes m,, m,, ..., m,: hence from (B.4) we have

v, 0

where

r.

)

VVi=1,, i=12...

Notice that in the special case, when all eigenvalues of R are distinct, then V is diagonal and unitary
and each diagonal entry is a phase factor. In that case

B.=%B,, i=1,2,.... M. (B.6)
In particular, different sets of signal subspace normalized eigenvectors of S are related in this fashion
(see (A.7)).
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